Plaster Header, Sustainable Building Quote

Plaster

This page will develop indefinitely as an open source plaster resource. The goal of this page is to discuss natural and traditional plasters with the intent to open source share our research and collaboration for identifying the best options for balancing breathability with durability for long-lasting water proofing in do-it-yourself eco-home building situations like the Earthbag Village (Pod 1) and Straw Bale Village (Pod 2). The first major evolution of this tutorial will be with the 3-dome cluster as part of our crowdfunding campaign, we’ll then further evolve it with the complete Earthbag Village (Pod 1) and Duplicable City Center®, and then the other 6 villages.

This page is divided into the following sections:

RELATED PAGES (click icons for complete pages)

Earthbag Village Icon, building with earthbags, earthbag architecture, earthbag construction, earthbag homes, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageStraw Bale Village Icon, straw bale construction, straw bale architecture, straw bale eco-living, global ecology, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageCob Village Icon, building with cob, cob home, cob living, cob architecture, cob construction, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageEarth Block Village Icon, building with earth blocks, earth block construction, earth block architecture, open source earth block, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageShipping Container Village Icon, shipping container architecture, shipping container construction, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageRecycled Materials Village Icon, recycled materials construction, recycled materials building, Earthship inspired construction, building with tires, building with recycled materials, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageTree House Village icon, living in trees, forest living, open source architecture, Highest Good Housing, One Community, Sustainable Community Construction, Eco-living, Green Living, Community Living, Self-sufficiency, Highest Good for All, One Community Global, Earthbag Village, Straw Bale Village, Cob Village, Compressed Earth Block Village, Recycled Materials Village, Shipping Container Village, Tree House Village, DCC, open source architecture, open source construction, sustainable housing, eco-tourism, global transformation, green construction, LEED Platinum, sustainable village, green village LEED Platinum Village, Eco-living villageduplicable city center, open source city hub, laundry, dining, swimming pool, hot tub, kitchen, library, game room, zicons

WAYS TO CONTRIBUTE TO EVOLVING THIS SUSTAINABILITY COMPONENT WITH US

SUGGESTIONS     ●     CONSULTING     ●     MEMBERSHIP     ●     OTHER OPTIONS

CLICK THESE ICONS TO JOIN US THROUGH SOCIAL MEDIA

One Community, Google PlusOne Community, YoutubeOne Community, LinkedInOne Community, TwitterOne Community, Facebook, UpdatesOne Community, Facebook, GroupsOne Community, Facebook, FansOne Community, Facebook, 3D PlantsOne Community, StumbleUponOne Community, PinterestOne Community, RedditOne Community, Weekly, Progress, Updates, BlogOne Community. Tumblr

 

KEY CONSULTANTS TO THIS OPEN SOURCE PLASTER RESOURCE

Amira Kessem: Mechanical Engineering Student in Israel
Scott Howard: Sustainable Building Expert and Owner of Earthen Hand Natural Building

WHY ANALYZE PLASTER

In non-traditional home building with ultra-eco building materials and designs that don’t include a typical roof, protecting the walls of the structure can present unique challenges. Balancing durability, breathability, affordability, and ease of use and acquisition with desires for sustainability and eco-friendliness is something we’ve researched extensively as part of our Highest Good lifestyle considerations and plans for construction of the 7 different sustainable village models.

TYPES OF PLASTER

There are a broad diversity of traditional plaster types and methods as well as many eco alternatives. Here are the options we’ve researched so far. There are complete websites dedicated to plasters, so we’ve focused on the basics here plus where it can be purchased and the cost per unity of measure. Click the names below to be taken to the specifics on this page:

  1. Gypsum plaster (Plaster of Paris)
  2. Lime plaster
  3. Cement plaster (Stucco)
  4. Clay plaster
  5. Other plasters

 Click here for an extremely informative PDF about the history of lath and plaster

GYPSUM PLASTER (plaster of Paris)

Gypsum plaster, plaster of ParisGypsum plaster is a plaster that is fire proof, doesn’t emit any kind of chemical vapors, and is easy to make with an over-the-counter just-add-water mix that is widely available. It is a crystalline combination of calcium sulphate which is mined all over the world, and is also a synthetic by-product of major industries such as fossil-fuelled power stations. Gypsum plaster has very good insulation properties for both thermal (R-Value of .6 to .9 per inch) and acoustic. It is also moisture-resistant and impact-resistance. The big problem with gypsum plaster is that it is non-breathable, so it is not recommended for external use in damp situations.

Where it can be purchased:
Cost per unit of measure:
  • 25-lb Plaster of Paris – $15.98.
  • 4-lb Plaster of Paris – $6.78
  • 1-gal. Flat Venetian Plaster – $35.98.
  • 25 lb. White Plaster of Paris Dry Mix – $15.98.

Learn More about Gypsum Plaster Here

LIME PLASTER

lime plasterLime plaster is breathable, readily available, and eco-friendly. Downsides are that it can be hard to apply evenly and it can burn your skin, so use gloves and long sleeves and lots of protection. It is best applied in thin coats, so don’t use it to fill in big gaps, but first shape the wall exactly as you want it to look. Every 4 or 5 years lime plaster will need a thin coat of limewash to maintain its strength. R-Value is about .2 per inch.

Where it can be purchased:
Cost per unit of measure:
  • Hydrated Lime Type S – $2.95 for 112g or $16.95 for 1kilo
  • QUIKRETE 50-lb Hydrated Lime – $11.41
  • Carmeuse Type S Miracle Morta-Lok Masons Hydrated Lime – 50-lbs – $9.89

Learn More about Lime Plaster Here | Also Here | This PDF | See Below Too

PORTLAND CEMENT PLASTER (stucco)

Stucco, cement plasterStucco is a readily available, very durable, and breathable finish material with a typical life span of 50-80 years or more. Downsides are a significant carbon footprint and a rigidity that lead to cracking and a regular need for inspection and patching in areas where any shifting of the structure can be expected. It’s R-Value is .2 per inch and it works better in dry climates than very wet climates. Cement plaster is applied in three coats: scratch coat, brown coat, and finish coat.

The ingredients for the first and second coats of cement plaster are water, sand, and one of the following options:

  • Portland cement and type S hydrated lime
  • Portland cement and plastic cement (or masonry cement)
  • Plastic cement. (or masonry cement)

Ingredients for first two coats (each in different proportions) are:

  1. Plastic cement
  2. Sand (Plaster sand such as Oly #2, not concrete sand or masonry sand.)
  3. Water

Or:

  1. Regular cement
  2. Hydrated lime (Flintkote Type S lime)
  3. Sand
  4. Water

Or:

  1. Regular cement
  2. Plastic cement
  3. Sand
  4. Water

The third coat should use a premixed cement plaster powder.

Where it can be purchased:
Cost per unit of measure:
  • Portland cement: 94 lb. Portland Cement – $9.45 at Home Depot
  • Stucco mix: 50 lb. Stucco Mix – $13.68 at Home Depot

Learn More on the Pros and Cons of Stucco Here

CLAY PLASTER

Clay plasterClay plaster is partially free if you have clay on your property, super eco-friendly, breathable, and relatively easy to acquire even it it isn’t available on your property. The finishes of clay plaster are especially beautiful and clay plaster (and all earthen plasters) breathes especially well. Downsides are that it is not as durable when used externally and will require regular maintenance. To make clay plaster you mix clay, sand, and a fibrous additive like chopped straw. It’s R-Value is around .2 per inch.

Where it can be purchased:
Cost per unit of measure:
  • Dig it yourself: free
  • Specialty building supply stores: as low as $8.00/50 lb bag
  • Online: as high as $75.00/50 lb bag plus shipping

Learn More about Clay Plaster Here

OTHER PLASTERS

There are also acrylic plasters, silicone plasters, and silicate plasters. These plasters are durable and flexible. Downsides are that they are not breathable, more expensive and harder to acquire, and generally not considered eco-friendly.

Where they can be purchased:

 

MAKING ECO-PLASTER

Here is an an eco-plaster exploration compliments of Scott Howard, Sustainable Building Expert and Owner of Earthen Hand Natural Building.

what's possible with natural plasterThere are limitless possibilities using only natural materials to create plasters and/or paints. Natural materials can include, but are not limited to: clay, sand, various binders, various fibers, borax, water-glass, earth pigments, oils, waxes, and natural lime. These can be made to the consistency of anything from very pasty plaster or runny paint. They can be applied indoors or outdoors. These may be of any multitude of colors or textures, and can be applied over a wide variety of surfaces with proper preparation.

The possibilities are too many to list here, so we will instead focus on the areas where natural finishes reach certain limitations and the different ways to address these. The limitations are primarily:

  • Durability to Weather
  • Mechanical Durability
Earth Plaster Options

Limitless Possibilities for Artistic and Functional Application

When water touches clay-based substances, a tiny amount of clay dissolves into the water and is washed away. This can be overcome by the addition of surface or mix-in stabilization, but to make it completely waterproof using only natural materials is rare, and requires much maintenance.

Achieving greater durability to mechanical wear is another challenge for earthen surfaces. Earthen floors can be oiled many times to achieve durability. Additionally, they can be tamped. The addition of lime (or other stabilizers) also helps overall durability. Plasters and paints are similar to floors in that greater durability is achieved through burnishing and/or stabilization.

applying earth plaster by hand Experimenting is the key. As many methods that are known, there are more still to be tried out. To help with the exploration and experimentation process for achieving a durable and beautiful finish, we’ll explore the following key concepts:

  1. Adhesion/Binder Strength
  2. Particle Size/Layer Thickness
  3. Binder + Particle Balance
  4. Avoiding Decomposition
  5. Water Resistance
  6. Pigmentation
  7. Application Method

ADHESION/BINDER STRENGTH

Perhaps the most important consideration is getting the material to adequately adhere to the substrate over time. For example, natural finishes cannot be placed next to impervious surfaces like plastic, metal, or glass. Natural finishes breathe, and therefore can’t grip onto things that don’t. Attempts can be made to apply natural finishes over smooth or non-breathing substrates, but this will require using non-natural materials. An example is latex or acrylic paint mixed with sand used as an adhesion coat. Some natural surfaces like smooth wood can also pose a challenge for natural plasters to grip.

Natural-Plaster-WallAn all natural adhesion coat can be made with a sticky clay slip mixed with sand and painted on. Proportions can vary, but experiments can start with 1 part clay to 1 part sand. Another great binder is wheat paste, which can be used to create an excellent adhesion layer in the exact same manner as described with the clay slip. Wherever wheat paste is used, use some borax to prevent spoilage (1 tablespoon per 2-3 gallons when using 10 molar borax). To make wheat paste, use bleached, non-enriched flour, a bowl, a hot plate, a whisk, and a wooden spoon with a flat end. Combine 1 part cold water and 1 part flour in the bowl with the whisk, adding only a little flour at a time. Meanwhile, bring another 1 part water to a boil.

Once you have the very beginning of a boil, pour in the flour/water mix while whisking it in vigorously. Reduce heat immediately and stir every minute or two for about 15 minutes or until the mix reaches a yogurt-like texture. Be very careful not to create lumps or you will have to screen them out later. Be sure to use the spoon to scrape the bottom every time you stir, if you let it burn it will be lumpy and unusable. Set it aside to cool before use. Add borax to any mixture with the paste, using a ratio of approximately 1:30, paste:borax. This can be mixed with mason sand at a ratio of 1:3 or 4, paste:sand, and brushed onto smooth surfaces to create the adhesion layer.

PARTICLE SIZE/LAYER THICKNESS

Natural Plaster Wall 2Particle size is related to plaster thickness. First, sort all materials to the same particle size that you desire for the layer being added. Scott uses ¼”, ⅛”, 1/16”, and occasionally 1/32″ or 1/64″ screens to sort out larger particles.

This is ideally achieved dry. Moist clay can however still be strained by mixing it thoroughly into a slip using a mixing drill. It should have the consistency of runny yogurt in order to get it to pass through the screen, then you can shake the screen and/or push materials through with your hands.

Base layers are typically ⅜” to ¾” thickness, and therefore can accept particles of up to ¼” size. Smaller particles must be present to allow larger ones to function in the mix. This is a concept that applies to any layer. In other words, scratch (intermediate) coats which are typically 1/2″-1/8″ thickness, should contain particles of no greater size than half that of the layer’s thickness.

BINDER + PARTICLE BALANCE

Particle to binder ratios are also essential. Normally, plasters contain between 60% and 85% particles, with the remainder being binders. Particles also include fibers, which are usually most effective at sizes between 1″ and 1/16″ long. The exact recipe is something you may only be able to attain with experience because it depends entirely on the “feel” of the plaster. Factors include how active the clay may be, the size of the particles, how much of the former may be sand or fiber, and the particular application or end goal. As particle size decreases, usually a higher percentage of them is required, especially when sands can be as fine as powder.

Natural-Paint-Frog2When creating thin finish layers, such as an earthen paint, one common recipe is 1/3 part powdered silica (various sizes combined in this portion is ideal), 1/3 part clay, and 1/3 part wheat paste. Other additions are small amounts of borax, sodium silicate, and pigments. So in earthen paints that go on at about a 1/16″ thickness (they can applied by brush or trowel) the amounts are more like 65% binder and 35% sand. Higher percentages of fine sands can definitely be used, especially if they are smaller than a 200 mesh size. The higher amount of binder in this case is what aids the paint in sticking well and not “dusting”, i.e. coming off too easily. This type of finish layer goes on last, creating a very smooth surface. Although rich in binders, they won’t crack when they are applied in the appropriate thickness. Paints thicker than 1/16″ will likely crack and should be thought of as plasters, and follow those guidelines.

AVOIDING DECOMPOSITION

Avoiding Natural Plaster DecompositionTo avoid decomposition, any natural finish should leave out organic matter like plants or bugs. The reason straw or other fibers can last a very long time is due to both a high silica content that makes them break down very slowly without the presence of water, plus things surrounded by clay tend to have all moisture continually sucked out of them which prevents biological activity. The addition of borax helps any earthen mixture remain in a more permanent state, and will assist any fibers or biodegradable binders such as wheat paste from changing too quickly. The addition of borax helps any earthen mixture resist decay, and will help any fibers or biodegradable binders (eg wheat paste) not break down.

WATER RESISTANCE

Without using synthetic materials, it is challenging to achieve total waterproofness. In order to make earthen plasters and paints more water resistant, several strategies may be used. Binders like linseed, walnut, palm, or tongue oil, or sodium silicate (aka potassium silicate, aka waterglass) may be painted on final finish surfaces, and/or added in small amounts to the entire mix of one or more layers.

Natural-Bench

A Bench Made From Earthen Plaster and Naturally Sealed

Also, burnishing with steel trowels or smooth stones can mechanically align and compress the surface to close up pores and slow down absorption. Both of these strategies can be combined to create a burnished and stabilized surface that will likely out perform most anything else.

Tadelakt is an ancient lime plastering method that combines the chemical stabilization of lime with thorough burnishing, as well as an oil/soap treatment to the final surface that seals all pores. Such a surface, if properly maintained, can remain totally waterproof indefinitely.

Other similar methods exist that use only clay binders and linseed oil in many layers to build up a waterproof ‘linoleum.’ However, these methods are arguably out performed by the application of a shingled covering like wood, ceramic, or rock. The addition of these extra surface materials takes more time but is longer-lasting with less maintenance needed. Earthen materials can also be compressed to such an extent that they become nearly waterproof. Compressed earth blocks, for example, can resist rain on the vertical surface for a great number of years before eroding to the point that they even show wear. Depending on the amount of water exposure, it may take many decades before water would cause them to fail structurally.

PIGMENTATION

When using pigments, an even color is possible only by first mixing the pigment powder thoroughly with a few drops of water until there are no lumps. Iron oxides are the least toxic or expensive to use. Red(pink), yellow, and black (blue/grayish) when combined in various ways can yield green, orange, purple, maroon, etc. when trying to achieve more intense color, add the highest amount of pigment the plaster or paint can take. This is based on weight, rather than volume. It’s about 1 kg of pigment per 4 gallons of plaster or paint.

APPLICATION METHOD

Natural Plaster Application MethodsWhen applying base or scratch coats, it is possible to work in any direction out from the completed work. However, working from top to bottom is usually the most effective because you don’t have to keep touching completed sections or inadvertently re-wetting them. For finish layers, working in this pattern is essential. Different natural plasters and paints are also applicable with hands, yogurt lid trowels (with rims cut off), or steel finish trowels. Like most everything else with natural plasters, the key is experimentation and finding the tool and approach that works best for you and your specific situation.

RESOURCES

CLICK HERE TO SUGGEST A RESOURCE

SUMMARY

Natural plasters can be made that are as effective as non-natural alternatives but the process is as much an art as it is a skill. Because natural plasters are made from local materials, the process of creating them is always slightly different and experimentation is necessary. The more skill and experience a person has when entering the experimentation process, the more effective and efficient it will predictably be. Depending on your timeline and willingness to explore and engage the process, however, it can definitely be worth it. If not, the more traditional alternatives can be summarized like this:

  1. Gypsum plaster isn’t breathable
  2. Cement plaster has a significant carbon footprint
  3. Clay plaster requires annual maintenance
  4. Lime seems like the best bet. Its only drawback is it being a dangerous material to work with

FREQUENTLY ANSWERED QUESTIONS

CLICK HERE TO ASK A QUESTION OR MAKE A SUGGESTION

Open source DIY plaster videos will also be part of One Community’s upcoming crowdfunding campaign:

DIY Video half, ways to help One Community, open source sustainability, One Community globalDo-it-yourself video coming, helping through crowdfunding, crowdfunding sustainability

VIDEOS COMING: DO-IT-YOURSELF PLASTER HOW-TO

SEE OUR HOW TO HELP AND/OR CROWDFUNDING CAMPAIGN PAGE TO HELP US GET TO CREATING ALL THE TUTORIAL VIDEOS EVEN FASTER

BUTTON1